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Abstract 

Whole-blood transcriptional signatures of different severity profiles in patients with 

influenza A H1N1 infection 

 

By Chunhui Gu 

Announcement: This is a re-analysis research article for a public dataset (GSE111368). 

Background: As influenza remains one of the major threats worldwide because of its 

high mutational and recombination rates, vaccines and antivirals continue to be 

developed that help the body fight against infection through adjusting host gene 

expression for as many strains of the virus as possible. 

Objective: The primary purpose of this study is to investigate which genes or gene sets 

are related to the development of a high severity profile in patients with influenza 

infection.  

Methods: Normalized microarray data were obtained from a prior publicly available 

influenza study (Dunning et al. Nat Immunol, 2018). Differential expression analysis was 

accomplished by R version 3.6.1 and “limma” package version 3.40.6. Gene set 

enrichment analysis (GSEA) was conducted by using Molecular Signatures Database 

(MsigDB). CibersortX, an enhanced digital dissection technique was used to generate 

cell-specific gene expression patterns.  

Results: The differential expression analysis (DEA) showed that 48 (236), 158 (323), and 

293 (425) genes were differentially down-regulated (up-regulated) in severity I, severity 

II, and severity III categories of influenza patients, respectively, as compared to healthy 

controls (the changes of expression in severity categories compared with healthy controls 

were called contrasts for short). In total, there were 824 distinct differentially expressed 

genes (DEGs). 138 of the 824 DEGs were considered to have obvious different fold-

changes under different contrasts and the difference in fold-change mainly came from the 

comparison between high severity contrast and low severity contrast.  Several gene sets 

were identified based on gene set enrichment analysis and over-representation analysis.  

Discussion: The analysis of overlaps between enriched gene sets of different severity 

profiles of patients with influenza (compared to healthy controls) demonstrated that 

autoimmune mechanisms could play an important role in the development of a high 

severity profile. There remained around half of 138 DEGs that could not be attributed to 

any gene set in target collections. A custom set can be built from those genes as possible 

gene set describing the development of influenza A pathogenesis. The cell-specific 

transcriptional signature generated by CibersortX suggested that neutrophils and 

monocytes represent the main cell-types in which the effect of those genes and gene sets 

takes place. 
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Introduction 

Influenza disease caused by influenza virus infection is a global disease and was 

estimated to cause 290,000 to 650,000 influenza-related respiratory deaths every year 

during 2019-2030 [1]. Influenza viruses present as four types: A, B, C, and D [2]. 

Influenza A virus (IAV) is known for causing epidemic or even pandemic influenza 

outbreaks in humans. The most recent pandemic influenza (influenza A pdm09) occurred 

in 2009, which led to at least 6,670 deaths and more than 526,000 infections globally [3].  

The high mutational and recombination rates of influenza viruses especially IAV, are a 

major reason for the lack of long-lasting individual and herd immunity, causing seasonal 

epidemics or worldwide pandemics. IAV can be classified into different subtypes based 

on two surface glycoproteins: hemagglutinin (HA) and neuraminidase (NA) [4], which 

control virus entry into respiratory cell [5] and release of virus offspring from infected 

cells. A typical HA protein consists of three parts – a head with Receptor Binding Site, 

antigenic determinants, and a stalk region [6]. The high variability of the head region of 

HA complicates the design vaccines aiming to induce the production of antibodies 

targeting HA, because the correct prediction of which among circulating strains are going 

to become prevalent in the future is very difficult [7]. Although universal IAV vaccines 

are theoretically possible because of the relatively high conservation of RBS and stalk 

regions between strains, cross-protection provided by those vaccines is too weak to in 

practice [8] [9]. The stability of NA makes it another target for universal IAV drugs. 

Neuraminidase inhibitors (NAIs) can block the enzymatic site of the NA protein involves 

in the release of virus offspring from infected cells. Oseltamivir and zanamivir are two 
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NAI drugs that are widely used currently. Unfortunately, the occurrence of variants 

resistant to oseltamivir largely undermines its effect [10]. Despite the fact that only a few 

IAV strands have shown resistance to zanamivir, the debate about its ability in treating 

IAV remains unsettled [2] [11] [12].  

While much effort has focused on how to prevent and treat IAV infection by targeting the 

virus itself, the effect of host factors in determining the course of influenza infection was 

less known, at least until recently. Arguably, the high variability in observed clinical 

outcomes must have something to do with host factors, considering that most influenza 

infections are followed by mild symptoms, while a few cases lead to severe outcomes [4]. 

The impact on hospitalization of co-morbidities (such as obesity) and sociodemographic 

factors (such as a low education level) have been studied during the 2009 influenza 

(H1N1) pandemics [13]. However, more than 1/3 of all hospitalizations could not be 

explained by the identified host factors, leaving the possibility that other, as yet unknown, 

host factors may contribute to the progression of influenza infection [14]. Genetic risk 

factors such as single nucleotide polymorphisms (SNPs) may be at play, some with 

potential impact on the severity of influenza symptoms such as the rs12252 SNP in the 

IFITM3 gene [15]. However, no significant host SNP was identified that significantly 

correlated to poor prognosis in the 2009 influenza A (H1N1) pandemics [14].  

Explaining the largely fruitless efforts so far to pin differences in influenza infection on 

one or two genes, it is highly likely that many host genes are involved as a network in the 

response to influenza infection. Several studies have revealed the transcriptional 

signature of IVA infection [16] [17] and use it for diagnosis [18]. But those studies only 

involved a small sample size and didn’t explore gene expression patterns in patients with 



3 
 

different severity profiles in response to IAV infection. Recently, a study with a large 

enough sample size demonstrated that the transcriptional signatures in patients with 

different severity profiles are largely different. This leads to significantly different 

activation of some modular biological functions compared with healthy controls, 

including a down-regulation in interferon-related transcripts and an up-regulation in the 

inflammation module in the group with the highest severity [19]. However, this study did 

not consider that the different signatures associated with the various severity profiles 

could relate to confounders such as bacterial co-infection which accounts for about 11% 

to 35% of influenza infection [20].  Finding differentially expressed genes linked to 

influenza infection is not sufficient as one still needs to know why those genes are 

differentially expressed in order to accurately identify those that can help the host fight 

the virus. For example, two different explanations can be advanced for down-regulated 

genes. One is that IAV can employ mechanisms to reduce expressions of protective host 

genes and production of host proteins (“host shutoff”), which contributes to immune 

evasion of the virus, redirecting resources to the production of viral proteins [21]. 

Alternatively certain genes may be down-regulated to reallocate resources toward the 

production of antiviral proteins. Using new gene editing technologies to specifically up-

regulate those down-regulated genes could help the immune system in the battle with 

viruses in the first case while having the opposite effect if the truth is the alternative 

explanation.  

The primary purpose of this study was to investigate which genes may be responsible for 

high disease severity in patients with influenza after correcting for confounding factors.  
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Identifying those genes may lead to prophylactic measures to help prepare the immune 

system for IAV infection and avoid developing severe symptoms. 

Methods  

Study dataset 

Data used in this study originated from a previously published study [19] funded by the 

Mechanism of Severe Acute Influenza Consortium (MOSAIC), for which 109 influenza 

patients and 130 healthy controls were recruited during the 2010-2011 time span. 

Samples from three timepoints were obtained: T1 (at recruitment), T2 (48 hours after 

T1), and T3 (≥ 4 weeks after T1). The severity of influenza symptoms was categorized at 

T1 and T2 according to three levels: level 1, no considerable respiratory compromise, and 

blood oxygen saturation ≥ 93% without using additional oxygen supply other than room 

air; level 2, oxygen saturation is ≤ 93% with or without additional oxygen supply; level 3, 

respiratory compromise with invasive mechanical ventilation. More details about grading 

criteria can be found in the original paper.  

Microarray data processing and normalization 

Since raw data (idat file) were not provided by the authors despite repeated demands, the 

normalized data were used as a result. As quoted in the original paper, the following 

processes were applied to obtain normalized data from raw data: “Raw microarray data 

were processed using GeneSpring GX version 12.5 (Agilent Technologies). Following 

background subtraction, each probe was attributed a flag to denote its signal-intensity-

detection P-value. Filtering on flags removed probe sets that did not result in a ‘present’ 

call in at least 10% of the samples, where the ‘present’ lower cut-off was 0.99. Signal 
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values were then set to a threshold level of 10, were log2-transformed and were per chip 

normalized using a 75th percentile-shift algorithm. Each gene was normalized by 

dividing each mRNA transcript by the median intensity of all samples” [19]. Details about 

how normalized data was generalized are described in this original paper. The mapping 

from the Illumina manufacturer identifiers (ILMN) to gene symbols was completed by 

using a revised version of annotation illuminaHumanv4SYMBOLREANNOTATED [22] 

in illuminaHumanv4.db database. Average values were calculated for each distinct gene 

that has duplicate probes matched to it. 

Selection criteria of samples 

The primary purpose of this study was to investigate genes or gene sets related to 

different severity profiles in patients with influenza A H1N1 (we will use influenza A for 

short in the rest of this report) after adjustment for any confounders. Since there was no 

severity information provided in T3, data at T3 were not included in the following 

analysis. One important goal of this study is to distinguish genes differentially expressed 

because of influenza A infection rather than bacterial infection. Bacterial infection status, 

however, was not available for all influenza A patients, and we used samples from 

healthy controls and patients with valid bacterial infection status. One sample was further 

excluded as an outlier after analysis by PCA (Supplementary Fig. 1). In all, 227 samples 

from 61 patients and 130 healthy controls were used as the final dataset. 

Differential expression analysis design 

Differential expression analysis (DEA) was accomplished by R version 3.6.1 and 

“limma” version 3.40.6 (details about how to construct the data for DEA can be found in 
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the Supplementary methods). Genes that are related to a higher severity profile were 

obtained by analyzing the differential expression genes (DEGs) from the following 

contrasts in the model: severity I group vs. healthy control group, severity II group vs. the 

healthy control group and severity III groups vs. the healthy control group (Equation 1). 

Those three contrasts were designated S1-HC contrast, S2-HC contrast, and S3-HC 

contrast in the rest of this report for simplicity. False discovery rate adjusted p-value 

(FDR adjusted p-value or q-value) was used to control for multiple testing per the 

Benjamini-Hochberg method. A gene was considered as differentially expressed if its 

adjusted p-value was less than 0.1 and with an absolute log two-fold-change greater than 

1. Heatmaps of DEGs were created using hierarchical clustering with the “complete” 

method by “pheatmap” package version 1.0.12 [23].                

Gene set enrichment analysis 

Gene set enrichment analysis (GSEA) was a useful technique for finding meaningful 

DEGs by classifying genes into annotated groups related to specific biology processes 

[24]. We conducted GSEA by using the “fgsea” package, which implements cumulative 

GSEA-statistic calculation [25] along with the Molecular Signatures Database (MsigDB) 

[26]. An ordered list (ordered by log2-fold-change) of all the gene names and 

corresponding log2-fold-changes from DEA was used for each contrast in GSEA. To 

identify gene signatures in the dataset, overlaps with four collections of gene sets were 

used: HALLMARK, Biocarta, Kyoto Encyclopedia of Genes and Genomes (KEGG), and 

REACTOME. The minimum size of a gene set to test was set at 15 for reliable results. 

The maximum size of a gene set to test was set as large enough (5,000) to include all 

gene sets beyond the minimum requirement. The number of permutations to get adjusted 
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p-values was 50,000 for every candidate gene set for all three contrasts. The normalized 

enrichment score (NES) was obtained by divided the enrichment score (ES) by the mean 

enrichment of random samples of the same size. For each contrast, we took the top 20 

sets ordered by absolute NES after filtered by FDR adjusted p-value of 0.25 and analyzed 

their overlap condition. Top 40 and top 60 options were also used with the same 

procedure as we just described for the top 20 option.  

Imputing cell fractions and high-resolution cell-specific expression by CibersortX 

CibersortX [27], a web-based enhanced digital cytometry technique was used to infer cell 

fractions and cell-specific gene expression patterns for each sample. The cell fractions 

were imputed with the following parameters: no batch correction and no quantile 

normalization since no batch information was available and data were already quantile 

normalized. The high-resolution cell expression mode at this time only accepts less than 

1,000 genes due to intense computational demand. A list of DEGs was used as a subset 

file. The data were merged into 10 major cell subsets by the signature matrix LM22. 

High-resolution cell expression was imputed with the following parameters: no batch 

correction, no quantile normalization, and with default window size for deconvolution.  

Results 

Most genomics studies about influenza A focus on the difference in whole transcriptional 

signature between subjects versus healthy people without considering their different 

severities. In this study, we will concentrate on how genes are differentially expressed in 

different severity conditions after adjusting for possible cofounders. The data used in this 

study was a public dataset with a large enough sample size funded by MOSAIC. 
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“Limma” package in R was used to build a linear model to explore genes related to a high 

severity after adjusting for other necessary covariates.  

Demographic metadata covariance in different severity group 

To identify differences in gene signatures between different severity stages, it is essential 

to adjust for possible confounders and correlation structure. The demographic table was 

constructed to check the imbalance distribution between different severity groups for 

demographic variables using the chi-square test or ANOVA test. The dataset used in this 

study contained 227 samples from 61 influenza patients and 130 healthy controls 

(Supplementary Table 1). Each of the 130 healthy controls only contributed one 

sample; 25 influenza patients contributed only one sample and 36 patients contributed 2 

samples at two different time points, which introduced a correlation between samples 

(this will be discussed more later). The 227 samples were classified into 4 categories: 130 

samples of healthy control, 37 samples of severity I, 25 samples of severity II, and 35 

samples of severity III. Age (p < .001), day of illness at sampling (p < .001), pregnancy 

(p = 0.003), comorbidities (p <.001), and bacterial infection status (p < .001) were 

considered as significantly different among those four groups and were treated as 

covariates to be adjusted. Meanwhile, since ethnicity (p = 0.651) and sex (p = 0.986) in 

different groups were quite balanced, they were not adjusted in the model (Table 1).  

Principal component analysis for different severity group 

To obtain gene signatures from the microarray data, we used the improved probe-to-gene 

annotation to translate the probe manufacture ID to the gene symbol, based on which 

18,651 genes were mapped from 18,974 probes. Average values were calculated for each 
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distinct gene, and 12,828 distinct genes were obtained. Principal component analysis 

(PCA) of those 12,828 genes showed that the whole blood signature distinguished 

samples from healthy controls and influenza patients by the first two components (21.3% 

and 6.1%) (Fig. 1A).  Among different severity groups, the boundary between severity I 

and severity II groups was blurred, but there was a relatively clear boundary between 

severity III group and the other two severity groups, which suggested that a 

representative group of genes exists that can be used to differentiate a high severity stage 

from a low severity stage in influenza A infection.  

Differential expression analysis 

Since some of the samples in the influenza group came from the same patients, the 

correlation between technical replicates was estimated by the “duplicateCorrelation” 

function [28] in “limma” package, which returned an average correlation on the atanh-

transformed scale of 0.259 used to adjust the batch effect from the repeated measurement 

from the same patients. The DEA showed that there were 48 (236), 158 (323), and 293 

(425) genes were differentially down-regulated (up-regulated) respectively in the S1-HC 

contrast, S2-HC contrast, and S3-HC contrast, which in total were 344 (495) distinct 

genes (Fig. 1B). Moreover, not only there were more up-regulated genes, but their fold-

change levels are also considerably higher than down-regulated genes; due to the large 

sample size, almost all genes had an adjusted p-value less than 0.1 (Fig. 1C). 

There is a total of 824 distinct DEGs in any of those contrasts. The normalized intensity 

of those distinct 824 DEGs in three influenza severity groups and healthy control group 

revealed different transcription signatures. Differences between severity III group and the 

other two severity groups were also apparent for some clusters of genes (Supplementary 
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Fig. 2). 138 of the 824 DEGs were considered to have different fold-changes under 

different contrasts (a DEG was included if its fold-changes of any of three contrasts is 

one time larger than another contrast). We observed that the difference in fold-change 

mainly came from the comparison between S3-HC contrast and low severity contrast (S1-

HC or/and S2-HC) (Fig. 1D, Supplementary Fig. 3).  

Gene set enrichment analysis 

GESA showed a similar result to DEA. The Venn diagram displayed very similar patterns 

when we used the top 20, 40, and 60 gene sets for each comparison in the three contrasts. 

The number of gene sets in S1-HC and S2-HC just changed a little bit after switching 

from top 20 to top 40 because there were less than 40 gene sets filtered by FDR p-value 

of 0.25, and almost the same from top 40 to top 60 (Fig. 6). As a result, we kept using the 

top 40 because it explored all the important gene sets in two higher severity contrast but 

did not introduce unimportant gene sets from the severity I – HC contrast. 13 gene sets 

were enriched in all those three contrasts. 4 of those 13 gene sets were upregulated on all 

three contrasts and were all related to interferon signaling. 9 of 13 gene sets were down-

regulated in S1-HC contrast but up-regulated in higher severity contrasts (S2-HC and S3-

HC). 5 gene sets were exclusively enriched in the S3-HC contrast, of which 4 came from 

REACTOME (axon guidance, developmental biology, metabolism of amino acids and 

derivatives, and translation) and 1 came from HALLMARK (allograft rejection).  

Imputing cell fractions and high-resolution cell-specific expression by CibersortX 

As the severity of disease increases, the proportion of T cells decreased while the 

proportion of B cells increased (Supplementary Fig. 4). t-SNE plots showed the cluster 
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structure of samples with different severity status for different cell types. In none of those 

plots, severity I and severity II had unclear boundaries and were even mixed with healthy 

controls in some cell types (B cells and dendritic cells). For severity III patients, 

however, visible boundaries were seen with healthy controls except for dendritic cells 

(Fig. 3B, Supplementary Fig. 6).  Severity III showed a blurred boundary between 

severity I and severity II group for neutrophils and monocytes and they also had the most 

DEGs showing expression differences between healthy controls and disease samples 

(Fig. 3A, Supplementary Fig. 5).  

Discussion 

This study identifies genes or gene sets related to the severity of disease in patients with 

influenza A infection. We distinguished genes and gene sets as candidates that may serve 

as candidates for interventions with small molecules or gene therapy.  

We filtered 138 DEGs that were differentially regulated under different severity stages, 

just a few of them were in any of those 52 enriched gene sets in GSEA that had an FDR 

adjusted p-value less than 0.25. An over-representation analysis (ORA) demonstrated 

that about half of those genes fall into gene sets similar in GESA (Supplementary Table 

1) and still more than half of those genes that were not significant in any of gene sets in 

those 4 gene set collections. Although gene-level DEA is not as stable as gene-set-level 

GSEA, genes with differences in at least one log2-fold-changes showed signatures of 

neutrophil activation and degranulation as contrasting differences between different 

severity groups (Fig. 1D). Accordingly, we suggest using this gene set to set up a new 

signature for severe cases in influenza infections using the 138 DEGs that differentially 
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expressed under high and low severity stages. In the future, we can use this custom gene 

set to conduct GESAs for data from other studies to further explore that whether those 

genes could be used as a pathway to demonstrate how our body fight with influenza A 

infection on the high severity stage.  

While we have targeted some genes that may be associated with influenza A infection 

severity, we cannot prove that whether differential expression of those genes is the reason 

why patients fall into a high severity stage or the result from the body’s response to 

influenza A infection. To address this specific issue, future studies are needed that will 

obtain blood samples at different time points from a sufficient number of patients after 

symptom onset. By observing the change in severity over time, we can group them into 

two major outcome groups: relief group and aggravation group. By analyzing the trend of 

gene expression in different groups and find genes that have different expression 

regulation profiles, we could be more confident in concluding those genes related to the 

development of infection after adjusting for possible confounders.  

Although the dataset used in this study was not designed for this purpose, we can still 

make reasonable inferences from GSEA results and rule out genes and enriched gene sets 

that are not likely to be the reason why a high severity stage is reached. The leading 

edges of the four gene sets from REACTOME collection enriched exclusively in the S3-

HC contrast showed that the majority of genes shared between the four gene sets were 

Myc targets (Supplementary Fig. 7). Those genes are involved in cell proliferation, 

apoptosis, and metabolism and seem to relate to the recovery process of the body [29]. 

Besides, many up-regulated gene sets related to autoimmune progress such as allograft, 
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graft versus host disease (GVHD), and asthma suggests that the autoimmune mechanism 

could play an important role in the development of symptoms [30]. 

The CibersortX tool allowed us to investigate cell-type-specific gene signatures. 

However, at this time, it only generated matrices for a gene list of a certain length for 

computation consideration. If the transcriptional signature of all the genes in the original 

normalized matrix is available for each specific cell type, we can use that just as a 

normalized matrix comes from a microarray or RNA-Seq to conduct DEA. Besides, the 

imputed cell-specific expression matrices were limited in the resolution. Some 

mathematical transformations needed to be used to magnify the contrast before the 

plotting of the heatmap of cell-type-specific transcriptional signatures. And the difference 

between high severity and low severity was not as distinct as it was in the bulk sample 

transcriptional signature. Despite its limitation, this analysis still offers us more 

information about where information from genes is mainly used to produce 

corresponding functional molecular outcomes. If possible, single-cell RNA-seq should be 

applied later to neutrophils and monocytes for a deeper understanding of how those genes 

impact the development of the host response to influenza infection at the cellular level.  

This study used “limma” (abbreviation for Linear model for Microarray analysis) 

package to conduct DEA. The model of “limma” assumes that the expression of a gene is 

the linear combination of the effects of variables. We assumed that there was no 

interaction between variables. However, this assumption may be incorrect.  Other models 

involving interaction terms can be built to see whether there is a major difference 

between non-interaction models and with-interaction models. 
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This study used data after background correction and normalization. However, the 

technique that the original authors used in the background correction process introduced a 

lot of negative values and log-transformation of data included a massive loss of 

information that could have otherwise been preserved [31]. If raw data were made 

available, a more robust background correction and normalization method combining 

information from control probes could be used to obtain a more accurate result.  
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Figures and tables 
 

Covariate Statistics Level Healthy 

Control  

N = 130 

Severity I 

N = 37 

Severity 

II 

N = 25 

Severity 

III 

N = 35 

Parametric 

P-value 

Age    34.64 38.33 46.20 38.16 <.001 

        

Day of illness   0 7.11 7.04 11.11 <.001 

        

Sex  Female 75 (57.69) 21 (56.76) 11 (44.00) 20 (57.14) 0.651 

  Male 16 (43.24) 16 (43.24) 14 (56.00) 15 (42.86)  

        

Ethnicity N (col %) White 90 (69.23) 25 (67.57) 17 (68.00) 25 (71.43) 0.986 

  Other 40 (30.77) 12 (32.43) 8 (32.00) 10 (28.57)  

        

Pregnancy N (col %) Yes 1 (0.77) 17 (45.95) 10 (40.00) 14 (40.00) 0.003 

  No 74 (56.92) 4 (10.81) 1 (4.00) 6 (17.14)  

  N/A 55 (42.31) 16 (43.24) 14 (56.00) 15 (42.86)  

        

Comorbidities N (col %) 0 130 (100) 10 (27.03) 4 (16.00) 13 (37.14) <.001 

  1  7 (18.92) 12 (48.00) 14 (40)  

  2  17 (45.95) 6 (24.00) 2 (5.71)  

  ≥3  3 (8.11) 3 (12.00) 6 (17.14)  

        

Bacterial 

infection 

status 

N (col %) Yes 130 (100) 20 (54.05) 14 (60.71) 23 (65.71) <.001 

  No  17 (45.95) 11 (39.29) 12 (34.29)  

        

Table 1. Descriptive table of samples grouped by severity. 
The parametric p-value is calculated by ANOVA for numerical covariates and chi-square test for 

categorical covariates.  
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Figure 1. Gene-level analysis. 
(A)Principal component analysis. X-axis: the highest principal component accounting for the variance. 

Y-axis: the second-highest principal component accounting for the variance. Samples were annotated by 

different colors by their severity status: healthy control (HC, purple), severity I (green), severity II (blue), 

and severity III (red) (B) Overlaps of DEGs in three contrasts. The Venn diagram showed the pairwise 

and three-way overlap between differentially expressed genes (DEGs) in Severity I – HC, Severity II – HC, 

and Severity III – HC contrasts. Genes in pairwise overlap are shared by both contrasts. The overlap of 

pairwise overlaps determines the three-way overlap. Left panel: genes were down-regulated; Right panel: 

genes were up-regulated. (C) Volcano plots of differentially expressed genes under different severities 

compared with healthy control. Genes had log2-fold change larger than 1 and adjusted p-value less than 

0.1 (considered as DEGs in this study) were annotated as red dots. Genes had log2-fold change larger than 

1 but adjusted p-value did not meet 0.1 criteria were annotated as blue dots. (D) Heatmap of 138 DEGs 

that were differently regulated among different severity stages compared with healthy controls. Genes 

were selected from distinct 824 DEGs in DEA with the following criteria: there is a difference of at least 1 

in log2-fold-change between any two of the three contrasts (Severity I – HC, Severity I – HC, and Severity 

III – HC). The color showed the log2-fold-change of the 138 DEGs under the three contrasts. 
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Figure 2. Gene set enrichment analysis. 
(A) Overlaps of enriched gene sets. This Venn diagram showed the pairwise and three-way overlap 

between enriched gene sets in Severity I – HC, Severity II – HC, and Severity III – HC contrasts. Gene sets 

in pairwise overlap are shared by both contrasts. The overlap of pairwise overlaps determines the three-

way overlap. Left panel: top 20 gene sets by absolute NES after filtered by FDR < 0.25; Middle panel: top 

40 gene sets by absolute NES after filtered by FDR adjusted p-value < 0.25; Right panel: top 60 gene sets 

by absolute NES after filtered by FDR adjusted p-value < 0.25. (B) Enrichment plot of the top 40 gene 

sets from each of the three contrasts ordered by absolute Normalized Enrichment Score (NES). Gene Set 

Enrichment Analyses (GESA) was conducted using all genes mapped from the microarray and their fold-

change information were used for ranking. Four representative information: Normalized Enrichment Score 

(NES), Adjusted P-value, Direction of regulation were shown for 52 distinct gene sets and 3 contrasts.  
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Figure 3. Cell-type-specific analysis. 
(A) Heatmaps of cell-specific transcriptional profiles. Left panel: neutrophils; Right panel: 

monocytes. A high-resolution expression profile (HREP) of 227 samples was available for each of 

the 10 major LM22 cell types. In each HREP, only the expressions of 824 DEGs were available. 

Data were log2 transformed and mean-centered before plotting. (B) Two-dimensional t-SNE 

plots profiled from 227 samples by CibersortX. t-SNE plots were generated by HREPs for each 

of the 10 LM22 major cell types (only two of them were shown here). Each dot in the plot 

represents the expressions of one of the 227 samples in corresponding cell types. Each sample 

was color-coded according to severity.  
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Appendix 1: Supplementary figure and table 
 

Covariate Statistics Level Influenza 
N = 61 

Healthy 
control 
N = 130 

Parametric P-
value 

Age  Mean (SD)  38.98 
(11.98) 

34.64 
(11.12) 

0.015 

      
Sex N (col %) Female 33 (54.10) 21 (56.76) 0.640 
  Male 28 (45.90) 16 (43.24)  
      
Ethnicity N (col %) White 43 (70.49) 90 (69.23) 0.860 
  Other 18 (29.51) 40 (30.77)  
      
Pregnancy N (col %) Yes 7 (11.48) 1 (0.77) 0.001 
  No 26 (42.62) 74 (56.92)  
  N/A 28 (45.90) 55 (42.31)  
      
Comorbidities N (col %) 0 17 (27.87) 130 (100) 0.004 
  1 20 (32.79)   
  2 17 (27.87)   
  ≥3   7 (11.48)   
      
Bacterial 
infection 
status 

N (col %) Yes 35 (57.38)  <.001 

  No 26 (42.62) 130 (100)  

      

Supplementary Table 1. 

Descriptive table of subjects. 

The parametric p-value is calculated by ANOVA for numerical covariates and chi-square test for 

categorical covariates.  
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Gene Set Name # 
Genes 
in 
Gene 
Set (K) 

Description # 
Gene
s in 
Overl
ap (k) 

k/K p-
valu
e 

FDR 
q-
valu
e 

REACTOME_NEUTROPHIL_DEGRANULATION 478 Neutrophil 
degranulatio
n 

41 0.08
58 

7.26
E-45 

1.47
E-41 

REACTOME_INNATE_IMMUNE_SYSTEM 1104 Innate 
Immune 
System 

49 0.04
44 

4.19
E-40 

4.24
E-37 

REACTOME_ANTIMICROBIAL_PEPTIDES 97 Antimicrobial 
peptides 

12 0.12
37 

1.46
E-15 

9.82
E-13 

HALLMARK_ALLOGRAFT_REJECTION 200 Genes up-
regulated 
during 
transplant 
rejection. 

12 0.06 9.14
E-12 

4.63
E-09 

KEGG_ASTHMA 30 Asthma 6 0.2 1.03
E-09 

4.18
E-07 

REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_A
ND_A_NON_LYMPHOID_CELL 

186 Immunoregul
atory 
interactions 
between a 
Lymphoid 
and a non-
Lymphoid cell 

10 0.05
38 

1.52
E-09 

5.14
E-07 

REACTOME_ADAPTIVE_IMMUNE_SYSTEM 811 Adaptive 
Immune 
System 

17 0.02
1 

5.68
E-09 

1.64
E-06 

KEGG_GRAFT_VERSUS_HOST_DISEASE 41 Graft-versus-
host disease 

6 0.14
63 

7.56
E-09 

1.91
E-06 

KEGG_ALLOGRAFT_REJECTION 37 Allograft 
rejection 

5 0.13
51 

2.15
E-07 

4.36
E-05 

REACTOME_GENERATION_OF_SECOND_MESSENGER_MOLECULES 37 Generation of 
second 
messenger 
molecules 

5 0.13
51 

2.15
E-07 

4.36
E-05 

Supplementary Table 2. 

Important gene sets in over-representative analysis. 

The top 10 gene sets after filtered by FDR q-value < 0.05 
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Supplementary Figure 1. 

Plot of the first two principal components before removing the outlier. 

 A major of variance in the PC2 was caused by the outlier making other samples almost lie in a 

line in the PC2.  

 

 

 

 

Supplementary Figure 2. 

Heatmap of 824 distinct differentially expressed genes. 

The figure shows different transcription signatures between the healthy control group and the three 

influenza A severity groups. 
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Supplementary Figure 3. 

Heatmap of 138 DEGs that were differently regulated among different 

severity stages compared with healthy controls. 

Genes were selected from distinct 824 DEGs in DEA with the following criteria: at least one of the three 

pairwise comparisons of fold-changes from three contrasts (Severity I – HC, Severity I – HC, and Severity 

III – HC) show large enough difference (there is a difference of at least 1 in log2-fold-change between any 

two of the three contrast). Left panel: the fold-changes of the 138 DEGs under three contrasts (Severity I – 

HC, Severity I – HC, and Severity III – HC). Right panel:  the normalized intensities of the 138 DEGs 

under different conditions (HC, Severity I, Severity II, and Severity III). 
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Supplementary Figure 4. 

Fractions of 22 cell-types in all samples. 

Left panel: Cell-type fractions were calculated by the CibersortX and represented as percentage 

amounted to 100% on the x-axis. 227 samples were arranged on the y-axis. The number of dots 

on the y-axis represents the severity of that sample: “.” for healthy controls, “..” for severity I 

group, “…” for severity II group and “….” for severity III group.  Each cell type was 

represented by a different color and similar cell types were represented as similar colors. Right 

panel: names and color-codes of corresponding 22 cell-types. 
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Supplementary Fig 5. 

Heatmaps of cell-specific transcriptional profiles. 

High-resolution expression profiles (HREPs) of 227 samples were available for each of the 10 

major LM22 cell types. In each HREP, only the expressions of 824 DEGs were available. Data 

were log2 transformed and mean-centered before plotting. Genes that didn’t have information in 

imputed cell-specific transcriptional profiles were denoted as black. 
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Supplementary Figure 6. 

Two-dimensional t-SNE plots profiled from 227 samples by CibersortX. 

t-SNE plots were generated by HREPs for each of the 10 LM22 major cell types. Each dot in the 

plot represents the expressions of one of the 227 samples in corresponding cell types. The bottom-

right corner shows that each sample was color-coded by its severity.  
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Supplementary Figure 7. 

Venn diagram of the four universally enriched gene set in high severity stage 

in the REACTOME collection. 

1: REACTOME_TRANSLATION, 

2: REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES, 

3: REACTOME_DEVELOPMENTAL_BIOLOGY, 

4: REACTOME_AXON_GUIDANCE 
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Appendix 2: Supplementary methods  
 

Design matrix for differentially expression analysis (DEA) 

A design matrix was built based on a series of covariates: age, pregnancy status, days of 

illness, comorbidities, bacteria status, and severity. Among those covariates, only days of 

illness was treated as a continuous variable. Since elderly people which commonly 

defined as older than 65 years are more likely to have severe influenza [32], we use this 

rule to make age as a binary variable in this study. Besides, pregnancy status (male with 

N/A was coded as No) and bacterial status were also treated as binary variables. 

Comorbidities (0, 1, 2, and ≥3), and severity (HC, 1, 2, and 3) were multi-level factors. 

Bayesian hierarch model for this study 

𝐸(𝑦𝑔𝑖) = 𝛽𝑔0 + 𝛽𝑔1 ∗ (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐼)𝑖 + 𝛽𝑔2 ∗ (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐼𝐼)𝑖 + 𝛽𝑔3 ∗ (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐼𝐼𝐼)𝑖

+ 𝛽𝑔4 ∗ (𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠)𝑖 + 𝛽𝑔5 ∗ (𝑃𝑟𝑒𝑔𝑒𝑛𝑐𝑦 𝑠𝑡𝑎𝑡𝑢𝑠)𝑖

+ 𝛽𝑔6 ∗ (𝐵𝑖𝑛𝑎𝑟𝑦 𝑎𝑔𝑒)𝑖 + 𝛽𝑔7 ∗ (𝑐𝑜𝑚𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑖𝑒𝑠: 𝑛𝑜) +  𝛽𝑔8

∗ (𝑐𝑜𝑚𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑖𝑒𝑠: 1) +  𝛽𝑔9 ∗ (𝑐𝑜𝑚𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑖𝑒𝑠: 2) +  𝛽𝑔10

∗ (𝑐𝑜𝑚𝑜𝑟𝑏𝑖𝑑𝑖𝑡𝑖𝑒𝑠: ≥ 3) + 𝛽𝑔11 ∗ (𝐷𝑎𝑦 𝑜𝑓 𝑖𝑙𝑙𝑛𝑒𝑠𝑠) 

𝛽𝑔0: the basic line of gene 𝑔 𝑒xpression in log2 scale.  The basic line condition is a 

 healthy control group, no bacteria infection, no pregnancy, age

≤ 65, no comorbidity.  

  

𝛽𝑔𝑗: 𝑡he effect of 𝑗th factor in gene 𝑔′s expression in log2 scale, 𝑗 = 1, 2, … 10.  



32 
 

 𝛽𝑔1,  𝛽𝑔2, 𝑎𝑛𝑑 𝛽𝑔3 𝑤ill be the three contrasts in the method section respectively  

since 𝑡ℎ𝑒  intercept β0 will act as the basic line. 

𝑌𝑔𝑖: log2 normalized intensity of gene 𝑔 𝑖n sample 𝑖. 

Let set vector 𝒚𝑔 as the expression of gene 𝑔 𝑜f all the sample and 𝛽𝑔 as the  

coefficient vector. 

Then the above equation can be simplified as  

                                                             𝐸(𝒚𝑔) = 𝑿 ∙ 𝜷𝒈              

𝑋 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑒𝑎𝑐ℎ 𝑟𝑜𝑤 𝑎𝑠 𝑎 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑐𝑜𝑙𝑢𝑚𝑛 𝑎𝑠  

 a character of that sample   

The above linear model is fitted to the log2 intensity of each gene to get   

corresponding α̂𝑔, 𝑒𝑠𝑖𝑡𝑚𝑎𝑡𝑒 𝑜𝑓 𝜎𝑔
2:  𝑠𝑔

2, 𝑎𝑛𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥:  

                                                                   𝑣𝑎�̂�(�̂�𝑔) = 𝑉𝑔 𝑆𝑔
2 

                                               𝑉𝑔 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑠𝑔
2 

 

Let annotate νgj as the jth diagonal element of Vg . Assume that:  

β̂gj | 𝛽gj, 𝜎𝑔
2 ~ 𝑁(𝛼𝑔𝑗 , 𝑣𝑔𝑗𝜎𝑔

2) 

And 

𝑠𝑔
2 | 𝜎𝑔

2 ~ 
𝜎𝑔

2

𝑑𝑔
 𝜒𝑑𝑔

2                
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𝑑𝑔is the residual degree of freedom for the linear model of gene 𝑔 

 

Assume that the gene specific parameters such as  σ𝑔
2′

𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  

 with each other.  

We construct such a correlation structure by using a bayesian hierarchical  

model and set prior with some common hyperparameter shared by different genes: 

The prior of σ𝑔
2  𝑖𝑠 𝑎 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑠𝑐𝑎𝑙𝑒𝑑 𝑐ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛:   

                             
1

𝜎𝑔
2

~
1

𝑑0𝑠0
2  𝜒𝑑0

2 ,  

which is a conjugate prior for normal distribution with known mean μ  

The posterior distribution of 𝜎𝑔
2 is an inverse scaled chi − square with   

𝑑0 + 𝑑𝑔 as the degree parameter and 
𝑑0𝑆0

2+𝑑𝑔𝑆𝑔 
2

𝑑0+𝑑𝑔 
 as the scale parameter.    

Besides the posterior mean denoted 𝑎𝑠 �̃�𝑔 is the scale parameter:  

�̃�𝑔 =  
𝑑0𝑆0

2 + 𝑑𝑔𝑆𝑔
2

𝑑0 + 𝑑𝑔 
 

𝑇ℎ𝑒 𝑝𝑟𝑖𝑜𝑟 𝑓𝑜𝑟 𝛽𝑔𝑗 𝑖𝑠 𝑠𝑒𝑡 𝑎𝑠 ∶   

𝛽𝑔𝑗  | 𝜎𝑔
2 ~ 𝑁(0, 𝑣0𝑗𝜎𝑔

2) 

It has been shown that: 
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�̃�𝑔𝑗 =  
�̂�𝑔𝑗

�̃�𝑔√𝑣𝑔𝑗

  

follow a t-distribution with degrees of freedom 𝑑𝑔 + 𝑑0. 

If we just don’t impose a hierarchical structure to obtain a correlation between different 

genes, we can also obtain a t-statistic assuming �̂�𝑔𝑗 𝑎𝑛𝑑 𝑠𝑔
2 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 

𝑡𝑔𝑗 =  
�̂�𝑔𝑗

𝑠𝑔√𝑣𝑔𝑗

                    𝑡𝑔𝑗  follows a t − distribution with degrees of freedom 𝑑𝑔 

The distribution of �̃�𝑔𝑗 has 𝑑0 more degrees of freedom than 𝑡𝑔𝑗.  Since 𝑡𝑔𝑗 is  a   

statistic under frequentist standard, and 𝑡𝑔𝑗 is a hybrid of bayesian and frequentist,  

we call it moderated t-statistic. The extra degrees of freedom reflect the information 

borrowed from other genes. 

The hyperparameters 𝑣0𝑗 , 𝑠0, and 𝑑0 are decided by the empirical Bayes method   

implemented in the "limma" package [33]. 

 

 


